Presented by: David Divins at

1

Using Simulation to Estimate MOSFET Junction Temperature in a Circuit Application

Presented by: David Divins Senior Staff Field Applications Engineer International Rectifier ddivins1@irf.com

Agenda

- Definition of Electro-Thermal Simulation
- Simulation Tools and Methods
- Methods of Estimating Die Temperature
- Creating Quasi-Dynamic MOSFET Model
- Model Generation
- Example Application
- Conclusion

Electro-Thermal Simulation

 Purpose of Electro-Thermal Simulation is to predict MOSFET junction for a given application.

Electro-Thermal Simulation

- Applications
 - □ Solenoid drivers
 - □ Motor drive
 - □ Lighting ballast
 - □ DC/DC converters
 - □ Switch model power supplies
 - □ Class D amplifiers

Simulation Tools and Methods

- Tools
 - Simplorer (Ansoft) Circuit/System simulator with VHDL-AMS hardware description language
 - Saber (Synopsis) Circuit/System simulator with VHDL-AMS and MAST hardware description languages
 - Spector (Cadence) Circuit/System simulator with Verilog-A hardware description language
 - □ PSPICE (Cadence) Defacto standard in circuit simulation.

Simulation Tools and Methods

Method

Implementing model in the hardware description language
 Implementing model using equations and macro modeling

Simulation Tools and Methods

- Quasi-Dynamic MOSFET model implementation
 - □ Macro modeling with use of linking equations
 - Using a multi domain simulator that allows for Electro-Thermal simulation.
 - Volts and Amps
 - Heat flow (Watts) and temperature

Methods of Estimating Die Temperature

Methods of estimating MOSFET die junction temperature

□ Equation based + Thermal Impedance curve

P = I * V * D

Where: I = average current during the conduction cycle V = equivalent voltage across the device during the conduction cycle D = duty cycle

- Use Power calculated with P=I*V*D
- Use pulse width and duty cycle to determine Zth (thermal impedance) from device thermal impedance curve
- Temperature rise (\(\Delta T\)junction)= Zth * P

- Limitations of the equation based junction temperature estimate
 - Only temperature rise from junction to case is taken into account.
 Neglects case to ambient temperature rise.
 - □ Assumes the power pulse is an ideal square edged pulse train.
 - □ It does not allow for transient thermal response.

- Simulator based MOSFET junction temperature estimate
 - Uses circuit simulation to calculate junction temperature in an application
 - □ The circuit can be arbitrary
 - □ Transient thermal response is calculated
 - **Component parameters change with temperature**

- Assumptions made for junction temperature estimates using simulation
 - No other source of heat considered (Temperature rise due to self heating only)
 - Only MOSFET R_{DS(on)} and threshold voltage changes with temperature
 - Since simulation solves Ordinary Differential the junction is assumed to be a point source of heat.

Creating Quasi-Dynamic Thermal MOSFET Model

- Gathering information:
 - □ 25C Spice Model of MOSFET
 - Datasheet information
 - R_{DS(on)} vs. Temperature curve
 - Thermal Impedance Curve with thermal RC ladder network

.SUBCKT irf1404 1 2 3 * SPICE3 MODEL WITH THERMAL RC NETWORK

by MODPEX * *Copyright(c) Symmetry Design Systems* * All Rights Reserved * * UNPUBLISHED LICENSED SOFTWARE * * Contains Proprietary Information * * Which is The Property of * * SYMMETRY OR ITS LICENSORS * *Commercial Use or Resale Restricted * * by Symmetry License Agreement * generated on April 2, 01 * MODEL FORMAT: SPICE3 * Symmetry POWER MOS Model (Version 1.0) * External Node Designations * Node 1 -> Drain * Node 2 -> Gate * Node 3 -> Source M1 9 7 8 8 MM L=100u W=100u .MODEL MM NMOS LEVEL=1 IS=1e-32 +VTO=3.74133 LAMBDA=0.00250986 KP=514.947 +CGSO=7.17952e-05 CGDO=1.60578e-08 RS 8 3 0.00282867 D1 3 1 MD .MODEL MD D IS=1.89845e-10 RS=0.00218742 N=1.20398 BV=40 +IBV=0.00025 EG=1.2 XTI=1.85712 TT=2.00014e-05 +CJO=5.42237e-09 VJ=2.67939 M=0.566441 FC=0.1

Creating Quasi-Dynamic Thermal MOSFET Model

• 25C Spice Model

- □ Characterized to the datasheet
- Does not change performance characteristics as power is calculated
- □ Used as base model for Quasi-Dynamic MOSFET model

Creating Quasi-Dynamic Thermal MOSFET Model

Model Generation

Ladder Network

A thermal RC network used to model the dynamic thermal behavior of the package + mounting system.

The ladder network can be synthesized from the thermal impedance curve or is given by the MOSFET manufacturer

Model Generation

- Tying the thermal model to the 25C Spice model
 - \Box Create the equation that represents $R_{DS(on)}$ vs. temperature

Note: a, b and c are calculated via a curve fitting routine. The Rdson vs Temperature curve is assumed to be quadratic.

Model Generation

 Create the voltage source that represents the temperature dependence of Vth (threshold voltage)

 $Vth(Tj) = -0.007 * (Tj - 25) \longrightarrow$ Expression used in model.

The voltage source is in series with the MOSFETs gate.

Model Generation

Calculating the power in the MOSFET for use in the thermal network.

$$P = Id * Vds$$

This calculated power is the source for the thermal network.

Model Generation

Putting it together

Model Generation

Final model

- □ 25C Spice model
- □ Added voltage source Vth in gate implements Vth(Tj)
- □ dr implements
- □ Vds and the current in dr are used to calculate $R_{DS(on)}$ 25C
- □ Vdst and the current in dr is used to calculate the total power
- PWR_abs is used to insure that the thermal network is driven with positive power.

Example Application

- High side switch
- MOSFET being driven by a opto isolated drive
 Very low drive current capability
- Load is capacitive
- Issue: How does driving this load effect the junction temperature of the MOSFET

Example Application

Simulation Schematic

Example Application

Assumptions

- □ Tambient=25C
- □ Heak sink is modeled as just a thermal resistor
- □ C1 & R2 represent a load system i.e. power supply
- □ Ig, Vgs, PWR_FET, States 1 & 2, Trans1 and S1 are measurements, input stimulus and ideal switch

Example Application

Conclusion

- Electro-Thermal simulation allows for analysis in both electrical and thermal domains
- Quasi-Dynamic Thermal MOSFET model allows for self-heating to alter R_{DS(on)} and Vth during simulation as a function of temperature
- Quasi-Dynamic Thermal MOSFET Model generation is a data gathering task
- The example shows why it is difficult to switch a capacitive load with an opto-driver and a MOSFET due to the excessive junction temperature spike during turn-on.